Derivations of higher order in semiprime rings
نویسندگان
چکیده
منابع مشابه
Generalized Jordan Triple Higher ∗−Derivations on Semiprime Rings
Let R be an associative ring not necessarily with identity element. For any x, y ∈ R. Recall that R is prime if xRy = 0 implies x = 0 or y = 0, and is semiprime if xRx = 0 implies x = 0. Given an integer n ≥ 2, R is said to be n−torsion free if for x ∈ R, nx = 0 implies x = 0.An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + yd(x) holds for all x, y ∈ R, and it is called a...
متن کاملDerivations in semiprime rings and Banach algebras
Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. ...
متن کاملA note on derivations in semiprime rings
We prove in this note the following result. Let n > 1 be an integer and let R be an n!torsion-free semiprime ring with identity element. Suppose that there exists an additive mapping D : R→ R such that D(xn) =∑nj=1 xn− jD(x)x j−1is fulfilled for all x ∈ R. In this case, D is a derivation. This research is motivated by the work of Bridges and Bergen (1984). Throughout, R will represent an associ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1998
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171298000106